
email: sales@highintegritysystems.com
web: www.highintegritysystems.com

highintegritysystems

Saving Power
with an RTOS
INTRODUCTION

With increasing customer demand for green, energy
efficient products, and the amazing growth in mobile
devices where long battery life is highly desirable,
engineers now have to consider how best to reduce
the power consumed by their designs. This can
be partly achieved by selecting components that
consume less power, but the software architecture
also contribute to power saving.

This article discusses approaches to saving power by
using features commonly found in embedded Real
Time Operating Systems.

RTOS SCHEDULING EFFICIENCY

It is a commonly held belief that adding an RTOS to an embedded design
will create additional processing overhead, resulting in greater power
usage. For simple designs, where a polling ‘super loop’ architecture may
be more appropriate, this could be true. However, for more advanced,
complex designs, deploying an RTOS using an event based scheduling
algorithm typically reduces the amount of processing time required to run
your application, allowing the selection of a smaller processor or adding
functionality.

In a software project containing a priority based, pre-emptive RTOS,
Tasks are executed in order of priority, i.e the highest priority Task ready to
run is always allocated processor time. When there are no Tasks currently
available, for example, they are all blocked waiting for events, the RTOS
executes a background Task called the Idle Task. The Idle Task may
implement some background processing, but typically the system will
remain in the Idle Task waiting for an event to bring a Task back to life.
The more effectively the software design exploits the RTOS, the greater
the time spent in the Idle Task waiting.

N N+1 N+5N+4N+3N+2

Idle Task

Task A

Interrupt

RTOS

RTOS Ticks

RTOS wakes on
each Tick,
determines all
Tasks are blocked
and re-enables
the Idle Task

Idle Task places
processor into
low power mode

RTOS awakes in
response to an
external interrupt

IDLE TASK SLEEP MODE

The first, easy, step to save power is to allow the RTOS to place
the processor into a low power mode when it enters the Idle
Task. To remain responsive, the processor will wake up on the
next interrupt. If no external interrupt is triggered, this will be the
next RTOS Tick interrupt.

For example, with OPENRTOS® or SAFERTOS® this simple

power saving feature is implemented by placing the processor
into a low power mode from within the Idle Task hook function, as
shown in Figure 1.

The power saving that can be achieved by this simple method is
limited by the necessity to periodically exit and then re-enter the
low power mode to process RTOS Tick interrupts.

Figure 1. The interaction of the RTOS and Idle Task during Sleep Mode

WHEN USING SAFERTOS, TICKLESS SLEEP MODE CAN BE
ENTERED WHEN:

1. The Idle Task is the only task able to run because all the application
tasks are either in the Blocked state or in the Suspended state.

2. At least ‘N’ further complete tick periods will pass before the kernel
is due to transition an application task out of the Blocked state,
where ‘N’ is a user-defined value. This is done to avoid having to
calculate and reprogram the clock on each tick.

In Tickless Sleep Mode the processor will be put to sleep until the
next Task Block Time expires, or the next Software Timer is triggered,
whichever is sooner. If the following conditions are true, SAFERTOS will
place the processor in deep sleep mode at least until the next external
interrupt.

1. Software timers are not being used, or are not due to expire, hence
SAFERTOS is not due to execute a Timer Callback function at any
time in the future.

2. All the application Tasks are either in the Suspended state, or in the
Blocked state with an infinite timeout (a timeout value of portMAX_
DELAY), hence SAFERTOS is not due to transition a task out of the
Blocked state at any fixed time in the future.

SAFERTOS knows the longest time it can possibly sleep without the risk
of missing a Task Block Time expiring, or a Software Timer executing.
However, it cannot predict when it will “actually” exit the low power sleep
mode because it can’t predict asynchronous interrupts being accepted.
Therefore, when SAFERTOS exits a low power sleep, it cannot make
any assumptions about how long it was asleep for and so calculates the
actual sleep time before adjusting the system time accordingly.

WITTENSTEIN high integrity systems

Worldwide Sales and Support
Americas: +1 408 625 4712
ROTW: +44 1275 395 600
Email: sales@highintegritysystems.com
Web: www.highintegritysystems.com

Copyright 2019 WITTENSTEIN aerospace & simulation Ltd. V6.0. Correct at time of publishing.

N N+1 N+5N+4N+3N+2

Idle Task

Task A

Interrupt

RTOS

RTOS Ticks

RTOS awakes in
response to an
external interrupt

Idle Task places
processor into a
deep low power
mode, which
supresses the
RTOS Tick

Figure 2. The interaction of the RTOS and Idle Task during Ultra-Low Power Mode

SAFERTOS ULTRA-LOW POWER MODE

When supported by the processor, SAFERTOS can
be purchased supporting a tickless Ultra-low Power
Mode. This tickless sleep mode extends the power
save strategy previously presented further. Here
power is saved by completely stopping the RTOS tick
interrupt during idle periods and placing the system
in a power saving mode. Stopping the tick interrupt
allows the processor to remain in a deep power
saving mode longer until either an interrupt
occurs, or it is time for the RTOS to re-activate a
Task, as shown in Figure 2.

